On the small scale character of the stress and hydrogen concentration fields at the tip of an axial crack in steel pipeline: effect of hydrogen-induced softening on void growth

Author:

Dadfarnia Mohsen1,Sofronis Petros1,Somerday Brian P.2,Robertson Ian M.3

Affiliation:

1. University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, Illinois, USA

2. Sandia National Laboratories, Livermore, California, USA

3. University of Illinois at Urbana-Champaign, Department of Materials Science and Engineering, Urbana, Illinois, USA

Abstract

Abstract Gaseous hydrogen transport at pressures of 15 MPa is envisaged as a means of hydrogen delivery from central production facilities to refueling stations for the planned hydrogen economy. The study of the hydrogen embrittlement of medium or mild strength steels, which are under consideration for pipeline materials, has not as of yet led to methods to design safe and reliable pipelines. The most important failure modes in hydrogen containment components are due to subcritical cracking. However, current design guidelines for pipelines only tacitly address subcritical cracking by applying arbitrary, conservative safety factors on the applied stress. In the present work, we investigate the interaction of hydrogen transport with material elastoplasticity in the neighborhood of an axial crack in a steel pipeline. For all practical purposes, we find that the stress, deformation, and hydrogen fields exhibit a small scale character which allows for the use of the standard modified boundary layer approach to the study of the fracture behavior of steel pipelines. The approach is based on constraint fracture mechanics methodology whereby a two-parameter characterization – the stress intensity factor and the T-stress – is used to describe the interaction of the stress and deformation fields with the diffusing hydrogen under conditions of hydrogen uptake from the crack faces and outgassing through the outer boundaries, as in the pipeline. Employing the Rice and Tracey model of void growth, we find that hydrogen-induced softening can accelerate void growth in a small region confined at the crack tip by as much as 70 % relative to the case of a hydrogen-free material. We close by suggesting that one can ascertain the hydrogen effects on fracture at an axial pipeline crack with the use of a laboratory fracture mechanics specimen tested in hydrogen gas and subjected to the same intensity factor, and hydrostatic constraint, T-stress, as the real-life pipeline.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Reference62 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3