Affiliation:
1. Department of Physics , Talca University , Chile. E-mail:
2. Department of Radiation Application , Shahid Beheshti University, G.C, Tehran , Iran. E-mail:
Abstract
Abstract
Recently thorium-based fuel matrixes are taken into consideration for nuclear waste incineration because of thorium proliferation resistance feature moreover its breeding or convertor ability in both thermal and fast reactors. In this work, neutronic influences of adding Am to (Th-235U)O2 on effective delayed neutron fraction, reactivity coefficients and burn up of a fed CANDU core has been studied using MCNPX 2.6.0 computational code. Different atom fractions of Am have been introduced in the fuel matrix to evaluate its effects on neutronic parameters of the modeled core. The computational data show that adding 2% atom fraction of Am to thorium-based fuel matrix won't noticeably change reactivity coefficients in comparison with the fuel matrix containing 1% atom fraction of Am. The use of 2% atom fraction of Am resulted in a higher delayed neutron fraction. According to the obtained data, 32.85 GWd burn up of the higher Americium-containing fuel matrix resulted in 55.2%, 26.5%, 41.9% and 2.14% depletion of 241Am, 243Am, 235U and 232Th respectively. 132.8 kg of 233U fissile element is produced after the burn up time and the nuclear core multiplication factor increases in rate of 2390 pcm. The less americium-containing fuel matrix resulted in higher depletion of 241/
243Am, 235U and 232Th while the nuclear core effective multiplication factor increases in rate of 5630 pcm after the burn up time with 9.8 kg additional 233U production.
Subject
Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献