Development of a hydrogen diffusion gothic model of MARK III-containment

Author:

Zhen-Yu H.1,Huang H. Yu-Kai2,Wen-Sheng H.3,Chen Yen-Shu4,Bau-Shei P.2

Affiliation:

1. Department of Engineering and System Science , National Tsing Hua University, 101 Section 2, Kuang Fu Rd., Hsinchu 30013, Taiwan , R.O.C.

2. Institute of Nuclear Engineering and Science , National Tsing Hua University, 101 Section 2, Kuang Fu Rd., Hsinchu 30013, Taiwan , R.O.C.

3. Nuclear Science Technology Development Center , National Tsing Hua University, 101 Section 2, Kuang Fu Rd., Hsinchu 30013, Taiwan , R.O.C.

4. Nuclear Engineering Division , Institute of Nuclear Energy Research, 1000, Wenhua Rd. Jean Village, Long tan Township, Taiyuan County 32546, Taiwan , R.O.C.

Abstract

Abstract The accident that occurred at the Fukushima Daiichi Nuclear Power Plant is a reminder of the danger of hydrogen explosion within a reactor building. Sufficiently high hydrogen concentration may cause an explosion that could damage the structure, resulting in the release of radioisotopes into the environment. In the first part of this study, a gas diffusion experiment was performed, in which helium was used as the working fluid. An analytical model was also developed using the GOTHIC code and the model predictions of the helium distribution were found to be in good agreement with the experimentally measured data. In the second part of the study, a model of the Mark III containment of the Kuosheng Plant in Taiwan was developed, and was applied to a long-term station blackout (SBO) accident similar to that of the Fukushima plant. The hydrogen generation was calculated using the Modular Accident Analysis Program and was used as the boundary condition for the GOTHIC containment model. The simulation results revealed that the hydrogen concentration at the first floor of the wetwell in the containment reached 4% 9.7 h after the accident. This indicated the possibility of dangerous conditions inside the containment. Although active hydrogen ignitors are already installed in the Kuosheng plant, the findings of this study indicate that it may be necessary to add passive recombiners to prolong an SBO event.

Publisher

Walter de Gruyter GmbH

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3