Fracture Toughness of PP/EPDM/Nano-Ternary Composites: The Role of Distribution of Inorganic Particles

Author:

Gong L.1,Chen S.-H.1,Hou W.-M.1,Yin B.2,Li L.-P.2,Yang M.-B.2

Affiliation:

1. Department of Environment and Chemical Engineering , Dalian University, Dalian , PRC

2. College of Polymer Science and Engineering , State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu , PRC

Abstract

Abstract The influence of the distribution of the inorganic particles on the toughness of the PP/EPDM/nano-ternary composites was investigated. Four morphologies for PP/EPDM/nano-ternary composites were obtained by means of adjusting the surface tension of inorganic particles (nano-CaCO3, hydrophobic nano-SiO2 and hydrophilic nano-SiO2) and the compounding sequence (one-step extrusion and two-step extrusion). Morphological observation revealed that the segregated dispersion morphology was formed in the PP/EPDM/CaCO3 composite. For the PP/EPDM/R974 (hydrophobic nano-SiO2) composite, R974 particles were dispersed at the interface between the PP matrix and EPDM dispersed phase. A200 particles (hydrophilic nano-SiO2) continuously dispersed between PP and EPDM phase for PP/EPDM/A200 composites prepared by one-step, while were present in EPDM dispersed phase for the two-step PP/EPDM/A200 composites. The dependence of the toughness on the phase morphology of the components, especially the distribution of nanoparticles, was studied systematically. The impact strength of one-step PP/EPDM/A200 composites was pronouncedly enhanced, increasing 552 % compared to pure PP. Compared with the other three composites, the one-step PP/EPDM/A200 composites exhibits better effect of preventing crack propagation and far higher fracture energies. It is attributed to the A200 particles continuously dispersed between EPDM phase and matrix, which makes EPDM particles have better compatibility with the PP matrix and the overlapping of the stress field with A200 particles.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3