Fabrication of Double-Sided Micro-Lens Array Using UV Injection Molding

Author:

Chen X.-L.1,Ke K.-C.1,Chang N.-W.1,Chen Y.-H.1,Yang S.-Y.1

Affiliation:

1. Department of Mechanical Engineering , National Taiwan University, Taipei , ROC

Abstract

Abstract This paper reports the fabrication of double-sided micro-lens arrays using a UV injection molding process. The apparatus for UV injection molding is designed and implemented. Because the double-sided micro-lens array is fabricated using a UV-curable resin, the molds must be transparent. An alignment system is also required to align the cavities. In preparing the transparent molds, the cavities for the concave micro-lens and the alignment marks are first machined on the aluminum block. Using electroforming and hot embossing, transparent polycarbonate (PC) molds that have cavities for the MLAs and the alignment marks are fabricated. The PC molds are mounted on the UV injection molding apparatus using a pneumatic clamp. A real-time optical alignment system that comprises a CCD and an X-Y table is used to align the marks in the upper and lower molds. After alignment, the UV-curable resin is injected into the molds using a pneumatic dispenser. When the resin is cured with UV light, a double-sided micro-lens array is fabricated. The cycle time is 45 s. The respective degrees of replication for a convex and a concave micro-lens array are 99.74 % and 99.00 %. The respective standard deviation values for the diameter and the height are 1.3 μm, and 1.5 μm. The optical properties of the double-sided micro-lens array are measured. The average effective focal length is 1.686 mm, with a standard deviation of 0.007 mm, which demonstrates good formability and uniformity. Using the fabricated micro-lens array, the 1.2 mm diameter of the original light source is reduced to a 50 μm spot diameter. The images of an “A” pattern are complete and clear. This study demonstrates that a UV injection molding process that uses transparent PC molds can be used to fabricate a micro-lens array and other double-sided microstructures.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3