Effect of Viscoelasticity in Fountain Flow of Polyethylene Melts

Author:

Mitsoulis E.1

Affiliation:

1. School of Mining Engineering and Metallurgy, National Technical University of Athens, Athens, Greece

Abstract

Abstract Fountain flow is the phenomenon of deceleration and outward motion of fluid particles as they approach a slower moving interface. Numerical simulations have been undertaken for the flow of viscoelastic fluids, obeying an integral constitutive equation of the K-BKZ type, capable of describing the behavior of polymer melts. Two polyethylene melts are considered, a branched LDPE and a linear HDPE. Their rheology is well captured by the integral model. The flow simulations are performed for planar and axisymmetric geometries and show the shape and extent of the free surface, as well as the stresses and pressures in the system. The semicircle is a good rough approximation for the free surface of fountain flow, but detailed computations show the effect of elasticity on the free surface, which is non-monotonic for the LDPE as the elasticity level (or apparent shear rate) increases. The less elastic HDPE shows a monotonic decrease in the extent of the flow front as elasticity increases. In all cases, the excess pressure losses (front pressure correction) increase with increasing flow rate. The effect of a nonzero second normal stress difference is to extend the flow front and increase the pressure losses.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3