In-situ measurement of local strain partitioning in a commercial dual-phase steel

Author:

Ososkov Yuriy1,Wilkinson David S.1,Jain Mukesh2,Simpson Todd3

Affiliation:

1. McMaster University, Materials Science & Engineering Department, Hamilton, ON, Canada

2. McMaster University, Mechanical Engineering Department, Hamilton, ON, Canada

3. University of Western Ontario, Nanofabrication Laboratory, London, ON, Canada

Abstract

Abstract This paper presents the results of an in-situ Scanning Electron Microscopy study of the local strain partitioning between ferrite- and martensite-rich regions in a commercial dual-phase steel. A Scanning Electron Microscopy tensile micro-stage, coupled with strain measurement methodologies based on gold micro-grids and digital image correlation, has been used to measure inhomogeneous strain fields at the micron scale. It has been found that when martensite is distributed non-uniformly, local strain partitioning depends significantly on the local spatial phase distribution and morphology. Strain distribution maps can be developed which provide valuable information about local strain paths for both phases. The results suggest that a rather detailed description of the two-phase microstructure of such materials is needed in order to fully understand their mechanical behaviour.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3