Affiliation:
1. Department of Materials and Manufacturing Technology, Chalmers University of Technology, Göteborg, Sweden
Abstract
Abstract
The development of stiffness during unloading from peak stress during cyclic plastic deformation (low cycle fatigue) was studied in a high-strength Al-5.4Zn-1.2Mg alloy, both in naturally aged and peak aged conditions. A phenomenological model based on a order stress – strain relationship was developed using data from detailed recordings of the stress–strain hysteresis loops. Three stages of the parameter values were identified: an initial transition part of the fatigue life time, a major stationary stage shifting over to the final stage where failure modes become prominent. The nonlinear stiffness was found to be asymmetric with respect to tension and compression. Further, the naturally aged material generally shows larger stiffness for both positive and negative stresses than does the peak aged material. Finally, the stiffness for the naturally aged condition exhibits larger scatter compared to the peak aged materials, interpreted as inferior averaging in the dislocation structures.
Subject
Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献