Development of a Hybrid Solid-Microcellular Co-injection Molding Process

Author:

Turng L.-S.1,Kharbas H.1

Affiliation:

1. Polymer Engineering Center, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI USA

Abstract

Abstract This paper presents the development of a hybrid solid-microcellular co-injection molding process that combines aesthetic and processing advantages of injection molding with benefits and property attributes of microcellular plastics (MCPs). A two-color injection molding machine has been modified and equipped with an interfacial platen and a supercritical fluid (SCF) unit for co-injection molding with regular resins and MCPs. Co-injection molded polystyrene (PS) parts with a microcellular core encapsulated by the solid skin layer have been successfully produced. Systematic experiments were carried out with solid-microcellular co-injection molding, conventional solid-solid co-injection molding, and regular microcellular injection molding processes to study the effects of process conditions and core/skin volume ratios on the penetration and morphology of the microcellular core. Light microscopy and scanning electron microscopy (SEM) of the solid-microcellular co-injection molded specimens reveal a microcellular core with fairly fine and uniform cell size of 8 to 12 microns and a cell density of up to 3 × 10 cells/cm. Under similar process conditions, microcellular cores were found to penetrate longer and generate a more uniform and thicker skin layer than do solid cores. While improving the surface finish with solid skin layers, this process is capable of producing parts with reduced sink marks, lighter part weights, and shorter cycle times.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3