Simulating Polymer Mixing Processes Using the Boundary Element Method

Author:

Gramann P. J.1,Osswald T. A.1

Affiliation:

1. Polymer Processing Research Group, Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, U.S.A.

Abstract

Abstract The mixing of plastic into filled and unfilled polymer blends has been an important issue in the polymer industry. Processing difficulties with these polymers have been encountered in the mixing quality as well as in the thermal degradation due to viscous heating. Mixing often occurs as an element of the processing step, e.g., inside single and twin screw extruders used in the fabrication of final parts or sheets, and inside internal mixers such as the Banbury type mixer. Quantifying the mixing inside an extruder or an internal mixer and predicting the thermal degradation due to viscous heating is an extremely difficult task. A better understanding of the mixing process and control of viscous heating will lead to optimal parts and may eventually allow us to increase the relative amount of fillers within the material. This paper presents a boundary element simulation of the flow of filled and unfilled polymer blends inside extruders and internal mixers. First, the general equations that govern such flows are shown. The boundary integral equation and the fundamental solutions are then formulated followed by the numerical implementation and logistics of the simulation. After the theoretical background is presented, a numerical example is given. The paper then shows how the simulation was used to analyze the flow inside a single screw extruder and internal batch mixers. Such a simulation can be used to eliminate some of the tedious trial-and-error tasks that are typically performed in the early stages of material synthesis and can also be used by manufacturers of mixing equipment when optimizing the geometries of cavities and mixing heads to achieve optimum mixing with reduced viscous heating. This research will significantly increase our knowledge of the behavior of filled and unfilled polymer blends and expand our understanding of the complex phenomena that take place during their mixing process.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3