Co-Extrusion Layer Multiplication of Rheologically Mismatched Polymers: A Novel Processing Route

Author:

Huang R.1,Silva J.1,Huntington B. A.2,Patz J.1,Andrade R.1,Harris P. J.1,Yin K.1,Cox M.3,Bonnecaze R. T.2,Maia J. M.1

Affiliation:

1. Department of Macromolecular Science and Engineering , CLiPS – NSF Center for Layered Polymeric Systems, Case Western Reserve University, Cleveland OH , USA

2. Department of Chemical Engineering , University of Texas at Austin, Austin TX , USA

3. Lubrizol Advanced Materials Inc. , Cleveland OH , USA

Abstract

Abstract Co-extruded films with up to 65 layers of two rheologically mismatched polymer systems – polystyrene/poly(methylmethacrylate) (PS/PMMA) and hard/soft thermoplastic polyurethanes (TPUs) – were successfully produced using a combination of a 9-layer feedblock, low-pressure drop multiplier dies, and external lubricants. Formation of viscoelastic instabilities was studied using a custom visualization and by finite element method (FEM) simulations of a standard multiplier. The results showed that the flow inside the standard multiplier die is highly non-uniform, with severe gradients in shear and normal stresses and viscous encapsulation occurring mainly in the initial multiplication stages where there is enough material available in the low-viscosity layers to proceed with the encapsulation. To mitigate layer degradation the standard 2- or 3-layer feedblock was replaced with a 9-layer one, thereby decreasing the thickness of each layer at the end of the feedblock. Also, subsequent layering was performed using a low flow resistance die. This new multiplier die yields a more uniform flow profile and imparts a more homogeneous thermo-mechanical history on the melt which results in an improved layer stability. Simulations showed that in the standard die the second normal-stress difference (N2) responsible for elastic instabilities at the edges of the die are very high. These can be reduced by inducing slip at the wall resulting in be much improved layer uniformity and stability. This was accomplished experimentally via the use of external lubricants, and the resulting layered structure was indeed much better than was possible to achieve with the conventional multiplier dies.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3