Synthesis of a Novel Ladder Poly(azomethine-ester) Based on PET Waste Bottles

Author:

Issam A. M.1,Shahabuddin S.2,Kareem H. S.1,Mohamad S.13,Saidur R.2

Affiliation:

1. Polymer Research Laboratory , Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur , Malaysia

2. Research Centre for Nano-Materials and Technology (RCNMET) , School of Science and Technology, Sunway University, Selangor Darul Ehsan , Malaysia

3. University of Malaya Centre for Ionic Liquids , University of Malaya, Kuala Lumpur , Malaysia

Abstract

Abstract In the present investigation, a novel ladder polymer, poly(azomethine ester), was prepared via solution polycondensation polymerization between terephthalic acid and the novel monomer. Terephthalic acid was regenerated from PET waste bottles by saponification process, whereas p-phenylenediamine was obtained via Hoffmann rearrangement method. A novel monomer, namely N,N′-bis(2,5-dihydroxy benzylidene)-1,4-diaminobenzene was prepared from the reaction of 2,5-di-hydroxybenzadehyde with p-phenylenediamine in the ratio of 2:1, respectively. For the first time a solution polycondensation method has been employed for the synthesis of a ladder polymer which is otherwise prepared commonly via Diels-Alder cycloaddition reaction. The synthesized ladder polymer was characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR), carbon nuclear magnetic resonance spectroscopy (13C NMR), elemental analysis (CHN), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results revealed that the ladder polymer possess highly regular ladder like framework, and that most of the ester groups have taken part in the side-by-side polymerization reaction.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3