Affiliation:
1. Khon Kaen University, Khon Kaen 40002, Thailand
Abstract
Abstract
This study proposes a method for integrating finite element analysis and response surface methodology to predict tearing locations in the deep drawing of a rectangular-shape AISI 304 cup. The finite element model was confirmed by a deep-drawing experiment with nitrogengas springs, and the finite element analysis results were in agreement. Moreover, the regression model was developed using response surface methodology to predict final thickness at various locations on the rectangular-shape deep-drawn cup based on 40 finite element cases containing varied blank holder forces. The maximum percentage of thinning values was obtained from the response surface methodology results. The relationships among the blank holder forces and the thinning values at different locations were then further developed. The maps of the predicted tearing locations were then obtained and directly corresponded to the number of locations the specific blank holder forces. These maps, as established, could be directly used in a closed-loop control system enabling tearing defects to be prevented or eliminated.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献