Processing LDS-Circuit Boards by Selective Laser Sintering

Author:

Wörz A.1,Wudy K.1,Drummer D.1,Heidebrecht M.2,Klein S.2

Affiliation:

1. Institute of Polymer Technology , Friedrich-Alexander University Erlangen-Nuremberg, Erlangen , Germany

2. Merck KGaA , Darmstadt , Germany

Abstract

Abstract As the demand for individualized products rises, the development and need for additive manufacturing (AM) techniques such as selective laser sintering (SLS) has strongly increased. The industrial use of these procedures for prototypes or small-scale production lines has grown due to their specific characteristics like the high achievable complexity. With the increasing demand for electrification and functionalization, the combination of AM with laser-direct structuring (LDS) gains interest. Therefore, the powder used for the investigation is dry coated with a LDS-additive, which enables laser activation and a metallization of the activated sections in a metallization bath. To characterize the influence of the LDS-additive on the process, the powder properties were investigated for unfilled and successive increased additive content. The thermal process window was identified by standard and process adapted isothermal differential scanning calorimetry. This showed a decrease of the isothermal crystallization time due to nucleation effects of the additive. Subsequently, parts were produced with a parameter study and showed a demand for a higher energy density. The resulting parts were then metallized with a parameter variation and characterized by stereomicroscopy. To investigate the influence of the different parameter sets and the LDS content, the mechanical properties were determined.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3