Effect of Screw Rotation Speed on the Properties of Polycarbonate/Vapor-Grown Carbon Fiber Composites Prepared by Melt Compounding

Author:

Tanoue S.1,Nithikaranjanatharn J.1,Okuzono H.1,Ueda H.1,Uematsu H.1,Iemoto Y.1

Affiliation:

1. Graduate School of Engineering , University of Fukui, Fukui , Japan

Abstract

Abstract The effect of screw rotation speed on the mechanical property and thermal conductivity of polycarbonate (PC)/vapor-grown carbon fiber (VGCF) composites prepared by a twin screw extruder was discussed in this paper. Two types of VGCF (VGCF-H, the aspect ratio of 40, and VGCF-S, the aspect ratio of 100) were used. In the tensile test, the breaking pattern of PC composite changed to brittle failures by adding VGCF-H irrespective of screw rotation speed. Young's modulus of PC/VGCF-H slightly increased with the screw rotation speed. On the other hands, the breaking strain of PC/VGCF drastically decreased above 150 min−1. Young's modulus of PC/VGCF-S slightly increased with screw rotation speed until 150 min−1, however, it decreased at 175 min−1. The thermal conductivity of PC/VGCF-H was independent of the screw rotation speed. In contrast, the thermal conductivity of PC/VGCF-S gradually increased with screw rotation speed until 150 min−1 and it also decreased at 175 min−1. From the SEM observation and rheological behavior, the dispersion state of VGCF-H in PC/VGCF-H was independent of the screw rotation speed. On the other hands, the network structures of VGCF-S were observed in PC/VGCF-S and the state of these network structures depended on the screw rotation speed. It was clarified that the mechanical property and thermal conductivity of PC/VGCF were attributable to the dispersion state of VGCF.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3