Simulation of Co-Rotating Twin Screw Extrusion Process Subject to Pressure-Dependent Wall Slip at Barrel and Screw Surfaces: 3D FEM Analysis for Combinations of Forward- and Reverse-Conveying Screw Elements

Author:

Malik M.1,Kalyon D. M.123,Golba J. C.4

Affiliation:

1. Highly Filled Materials Institute , Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ , USA

2. Chemical Engineering and Materials Science Department , Stevens Institute of Technology, Castle Point St. Hoboken, NJ , USA

3. Chemistry , Chemical Biology and Biomedical Engineering Department, Stevens Institute of Technology, Castle Point St. Hoboken, NJ , USA

4. PolyOne Corporation , Avon Lake, OH , USA

Abstract

Abstract Mathematical modeling and simulation of the coupled flow, deformation, heat and mass transfer, and rate of reactions occurring in the twin screw extruder allow the optimization of process parameters and the screw and barrel geometries. In mathematical modeling of the twin screw extrusion process the conventional flow boundary condition at the screw and barrel walls is the no-slip condition. However, most complex fluids, including polymers, polymeric suspensions and blends, exhibit wall slip, with the slip behavior depending on the intrinsic properties of the materials being processed, the operating conditions, the geometries of the barrel, screw and the die, and the properties of the solid surfaces. Typically, the slip velocity is specified to be a function of temperature, stress condition at the wall and the materials of construction. However, recent investigations have further revealed that the wall slip behavior can also be significantly affected by pressure. With an objective of considering the effects of wall slip on the dynamics of twin screw extrusion, fully-intermeshing co-rotating twin screw extrusion of a concentrated suspension is analyzed using three-dimensional finite element method, FEM, subject to the wall slip boundary condition. The wall slip boundary condition is first applied systematically to barrel and screw surfaces individually followed by the application of wall slip to both surfaces simultaneously. In an integrated fashion both the forward-conveying (pressure-generating) and reverse-conveying (pressure-losing) screw sections are considered. The effects of pressure on wall slip are also analyzed and elucidated.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3