Numerical Analysis and Evaluation of Process and Geometry Specific Transient Temperature Fields for a New Variation of Gas-Assisted Injection Molding

Author:

Moritzer E.1,Seidel S.1

Affiliation:

1. Polymer Processing Institute , University of Paderborn, Paderborn , Germany

Abstract

Abstract Two-Stage GITBlow, a special injection molding process developed by Polymer Processing Paderborn, combines the advantages of gas-assisted injection molding and blow molding. This is achieved by producing a preform with gas-assisted injection molding, which is then inflated into a larger cavity in the same mold. The inflation behavior is heavily influenced by the temperature distribution over the cross section of the preform. The preform is not rotationally symmetric and features functional geometries that are not inflated during the second process stage. Therefore, the temperature development during the first stage, i.e. the gas-assisted injection molding, as well as cooling and handling of the preform, is essential for the subsequent inflation. If certain thermal conditions are met, inflation and the creation of a homogeneous wall thickness is improved. The development of the necessary temperature profiles for homogeneous inflation is heavily dependent on the geometry of the gas chamber. Due to the preform's geometry, characteristic material accumulations are formed during the gas injection. These create local temperature hotspots that act as heat sources during the temperature equalization before inflation starts. Simulations were conducted to predict the gas chamber geometry and its influence on the temperature distribution and development during the process. The combination of two different simulation approaches creates a new method to analyze GITBlow and similar processes. Simulation results were verified with extensive experimental studies.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3