Production of nano-sized grains in powder metallurgy processed pure aluminum by equal channel angular densification (ECAD) and equal channel angular pressing (ECAP)

Author:

İpekçi Melih Turan1,Güral Ahmet1,Tekeli Süleyman1

Affiliation:

1. Ankara , Turkey

Abstract

Abstract In this study, pure aluminum powders were turned into bulk material using equal channel angular densification (ECAD)/equal channel angular pressing (ECAP) and further deformed up to 16 passes at 100 °C. For comparison, pure aluminum powders were also compacted in a mold without ECAD/ECAP process at the same temperature. The microstructures were characterized using TEM for grain size and shape measurements. In general, the grains were finer in the specimens processed by ECAD/ECAP than in the compacted specimen without ECAD/ECAP process. The high density which is very close to the full density of pure aluminum (2.7 g × cm-3) was reached at the second pass of ECAD/ECAP. By the application of ECAD/ECAP process, severe plastic deformation enabled particles to be compacted into fully dense materials at much lower temperatures and shorter times, compared to the conventional sintering process. The ECAD/ECAP process was shown to provide an effective method for producing nano-sized grain and nearly full densification in aluminum powder.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3