Critical sizes for coherent to semicoherent transition in precipitates

Author:

Kumar Arun1,Kaur Gaganpreet2,Subramaniam Anandh1

Affiliation:

1. Indian Institute of Technology Kanpur, Department of Materials Science and Engineering, Kanpur, INDIA

2. University of Delhi, Department of Nanoscience and Nanotechnology, Delhi, INDIA

Abstract

Abstract A coherent precipitate, on growth beyond a critical size, can become semicoherent through the formation of interfacial misfit dislocations. This investigation pertains to the finite element simulation of the state of stress of a coherent precipitate, its growth and the change in state of stress on the formation of an interfacial misfit dislocation loop. Critical radii are determined from the simulations based on: (i) global energy minimum (r*) and (ii) local force balance along the radial direction (r c). The concept of local force balance as existing in literature is extended to the circumferential direction, to calculate a new critical size (r t). Local force balance gives radii at which the interface is the stable position for the dislocation loop. Off-interface stability of the dislocation loops is also investigated. The Cu–γFe system is used as an example to illustrate the new methodology developed and validate the results of the simulation. The power of the methodology is shown by considering a configuration (precipitation in a thin disc), where standard theoretical formulations are inadequate.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3