Fragility, kinetic stability and phase separations in the undercooled state of bulk glass formers – a case study on metallic model systems

Author:

Wilde Gerhard1,Madge Shantanu V.12

Affiliation:

1. Institute of Nanotechnology, Forschungszentrum Karlsruhe, Karlsruhe, Germany

2. now at: Arizona State University, Department of Chemical and Materials Engineering, Tempe, AZ, USA

Abstract

Abstract Several Pd-base alloys display a large tendency for glass formation that renders them especially suitable for investigations concerning (metastable) equilibrium properties of the deeply undercooled liquid including the glass transition, since the detrimental interference of premature crystallization can be avoided rather easily compared to other alloy systems. Here, thermodynamic, dynamic, and transport properties were analysed and compared to an Al-rich marginal glass former in the context of a possible relation between fragility, thermodynamic excess and kinetic stability against crystallization. Additionally, the possibility for liquid-phase separation occurring in the undercooled state of bulk glass-forming alloys is analysed as a function of thermal history, and critically discussed with respect of alternative mechanisms that are often summarized as ‘short-range ordering’.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3