Flow Behavior of PP-Polymer Nanocomposites in Capillary and Injection Molding Dies

Author:

Mitsoulis E.1,Battisti M.2,Neunhäuserer A.2,Perko L.3,Friesenbichler W.2

Affiliation:

1. School of Mining Engineering and Metallurgy , National Technical University of Athens, Athens , Greece

2. Institute of Injection Molding of Polymers , Department of Polymer Engineering, Montanuniversität Leoben , Austria

3. Woco Industrietechnik GmbH , Bad Soden-Salmünster , Germany

Abstract

Abstract For simulation of thin-wall injection molding, accurate viscosity data measured at shear rates up to 800,000 s−1 and more are important, but not available in any commercial material database. Such data can be measured on conventional injection molding machines with the help of a rheological mold, which is constructed like a standard injection mold with interchangeable dies. It enables operators to measure viscosity in time on their own machines at practically relevant shear rates (from 102 s−1 to 2 × 106 s−1). A special feature allows measuring the pressure dependency of viscosity using closed-loop counter pressure control. Experimental data are evaluated taking into account the melt temperature rise due to dissipative heating. Using capillary dies having different diameters, D, and length-to-diameter L/D ratios, a full rheological characterization has been carried out for a polypropylene-filled nanocomposite, and the experimental data have been fitted both with a viscous model (Cross) and a viscoelastic one (the Kaye – Bernstein, Kearsley, Zapas/Papanastasiou, Scriven, Macosko or K-BKZ/PSM model). Four injection molding dies have been also used to reach apparent shear rates up to 800,000 s−1. Particular emphasis has been given on the pressure-dependence of viscosity. It was found that only the viscoelastic simulations were capable of reproducing the experimental data well, while any viscous modeling always underestimates the pressures, especially at the higher apparent shear rates and L/D ratios.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Reference44 articles.

1. Entry Flows of Polyethylene Melts in Tapered Dies;Int. Polym. Proc.,2010

2. Capillary Flow of Low-Density Polyethylene;Polym. Eng. Sci.,2012

3. Slip Effects in HDPE Flows;J. Non-Newtonian Fluid Mech.,2012

4. End Corrections in the Capillary Flow of Polyethylene;J. Appl. Phys.,1957

5. Chapter 7 Extrusion Dies,1995

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3