Investigation of texture, microstructure, and mechanical properties of a magnesium–lanthanum alloy after thermo-mechanical processing

Author:

Elfiad Djazia1,Bourezg Yousf Islem1,Azzeddine Hiba12,Bradai Djamel1

Affiliation:

1. Faculty of Physics , USTHB, Algiers , Algeria

2. Department of Physics , University of M'sila, M'sila , Algeria

Abstract

Abstract The texture, microstructure, and mechanical properties of Mg-1.33La (wt.%) alloy after hot rolling and cold plane strain compression were investigated by using X-ray diffraction, optical microscopy, and micro-hardness measurements. This thermo-mechanical processing resulted in a relative weakening of the texture that was mainly a basal type. The microstructures after hot rolling and cold plane strain compression revealed the presence of a second phase (Mg17La2), mostly at grain boundaries. Twins were profuse, and their morphologies were quite different after hot rolling and cold plane strain compression. The Mg-1.33La (wt.%) alloy exhibited good room temperature formability and an increase in strength. The alloy's hardness increased with increasing deformation strain. Such properties were explained by the effect of both the Mg17La2 phase precipitation and the sample's texture.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3