Use of the Taguchi Method for Optimization of Poly (Butylene Terephthalate) and Poly (Trimethylene Terephthalate) Blends through Injection Molding

Author:

Zaverl M.1,Misra M.12,Mohanty A.12

Affiliation:

1. School of Engineering, University of Guelph, Ontario, Canada

2. Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, University of Guelph, Guelph, Canada

Abstract

Abstract A statistical experimental design method known as the Taguchi method was utilized to optimize the injection molding processes of poly(butylene terephthalate) (PBT) and poly(trimethylene terephthalate) (PTT) blends. Impact strength was taken as the optimized property. The significant parameters included mold temperature, injection pressure, holding pressure, injection time and holding temperature. Results of the Taguchi analysis gave mold temperatures as major influencing factor on the impact strength. The optimal processing conditions were determined through the Taguchi method giving an increase of 13.7% in impact strength for the blend. Further analysis was done to distinguish the blends dependency on temperature. Differential scanning calorimetry curves indicated the presence of recrystallization peaks that were dependent on the temperature profile the sample had received prior to testing. Polarized optical microscopy was used to show the different sphereulitic growth patterns under varying isothermal conditions. It was seen that at 90°C sphereulitic growth contained pockets of different sized spereulites. AFM imaging was also used to indicate differences in blended polymer morphology.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3