Optimization of the Weldline Strength in Gas-assist Injection Molded Thermoplastic

Author:

Liu S.-J.1,Ho C.-Y.1,Chang J.-H.1,Hung S.-W.2

Affiliation:

1. Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan

2. Hsin-Wu College, Taipei, Taiwan

Abstract

Abstract Gas assist injection molding has increasingly become an important process in industry because of its tremendous flexibility in the design and manufacture of plastic parts. However, there are some unsolved problems that confound the overall success of this technique. Weldlines success of this technique. Weldlines form wherever polymer flow fronts meet is one of them. In this report, an L'18 experimental matrix design based on the Taguchi method was conducted to optimize the weldline strength of gas assist injection molded thermoplastics. Experiments were carried out on an 80-ton injection molding machine equipped with a high-pressure nitrogen-gas injection unit. A dumbbell-shape mold cavity was used. After molding, the weldline strength of the parts was measured by a tensile tester For the factors selected in the main experiments, melt temperature and mold temperature were found to be the principal factors affecting the weldline property of gas assist injection molded thermoplastics. Weld strength decreases with the length of gas penetration. In addition the weldline strength of gas assist injection molded parts was found to be generally weaker than that of conventional injection molded parts.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3