Shrinkage Analysis on Convex Shellby Injection Molding

Author:

Chen C.-C. A.1,Chang S.-W.1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

Abstract

Abstract Injection molding of a convex shell has induced divergent flow front directions and therefore the shrinkage of a convex shell is difficult to controll. In some optical applications, such as ophthalmic devices of soft contact lens, that can be cast molded with a set of two convex shells made by injection molding there is a demand in maintaining dimensional stability. This research investigates the optimization of injection molding parameters for the minimum shrinkage of a convex shell of polypropylene (PP). The MPI 5.0 software is used first to simulate the filling stage of the convex shell and find the feasible operational ranges of parameters. Experiments were performed by an electric injection machine. Short shot experiments have been tested to compare with results of mold flow simulation. Taguchi's method is then used to find the optimal parameters for the minimum shrinkage of convex shell. Four parameters or factors, including mold temperature, injection temperature, holding pressure, and cooling time are considered in this study. An ANOVA table has been obtained for checking the significance of parameters. Results of simulation and experiments have been compared and the holding or packing pressure is found as the most significant parameter for the minimum shrinkage of a convex shell. Cooling time and injection temperature have been found as the second and third most significant parameters in this study. The optimal parameters have been established and then verified by the optimal injection molding experiment and the minimum shrinkage of convex shell was obtained as 72 μm.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3