Crystallization Kinetics for PP/EPDM/Nano-CaCO3 Composites – The Influence of Nanoparticles Distribution

Author:

Gong L.1,Yin B.2,Li L.-P.2,Yang M.-B.2

Affiliation:

1. Department of Environment and Chemical Engineering , Dalian University, Dalian , PRC

2. College of Polymer Science and Engineering , State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu , PRC

Abstract

Abstract The primary aim of this paper is to provide an insight on the effect of the distribution of calcium carbonate nanoparticles (nano-CaCO3) on the isothermal crystallization kinetics in Polypropylene (PP)/ethylene-propylene-diene terpolymer (EPDM)/nano-CaCO3 composites prepared by different compounding procedures. PP/EPDM/CaCO3 composites were prepared by two compounding procedures (direct compounding: mixed all three solid materials together; multistep compounding: the melted EPDM/CaCO3 master batch in a single screw extruder blended with melted PP in twin-screw extruder via injecting into the twin-screw extruder from a lateral port at the melting section of the twin-screw extruder). Morphological observation showed that abundant CaCO3 particles concentrated around EPDM dispersed phase in the multistep compounding composite, essentially different from the respectively dispersed morphology of CaCO3 particles and EPDM domains in the matrix for the direct compounding composite. Moreover, better dispersion of CaCO3 particles in the multistep compounding composite was observed comparing to the direct compounding composite. Futhermore, a pronounced improvement of the crystallization half time (t1/2), rate of crystallization (G) was achieved in the multistep compounding composite, which may originate from the better dispersion of CaCO3 particles providing larger nucleation density and the collaborative nucleation of EPDM and CaCO3 during the isothermal crystallization.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3