Microcellular Wood Fibre Reinforced PP Composites

Author:

Bledzki A. K.1,Faruk O.2

Affiliation:

1. Institut für Werkstofftechnik, Kunststoff- und Recyclingtechnik, University of Kassel, Kassel, Germany

2. Department of Forestry, Michigan State University, East Lansing, MI, U.S.A.

Abstract

Abstract Microcellular wood fibre reinforced polymers have practical significance given the possibility of reducing the density of automotive components due to their microcellular structure, as well as processing and performance advantages. A microcellular foaming process with a chemical foaming agent was applied at an experimental stage to injection moulding, extrusion and compression moulding of wood fibre reinforced polypropylene composites. The focus of the research was to investigate these processes using a chemical foaming agent and to perform comparative studies of the physico-mechanical properties of microcellular materials. The effects of the presence of the chemical foaming agent (exothermic) and variation of its content on density, microvoid content, mechanical properties (tensile and flexural), odour concentration and cell morphology of microcellular polypropylene-wood fibre composites were studied. The morphology, cell size, shape and distribution of the microcells were investigated using scanning electron micrographs. Injection moulding process produced finer microcellular structures in comparison with the other processes. As compared to the non foamed composites, the density reduced maximum 30% (0.741 g/cm3), 20% (0.837 g/cm3) and 22% (0.830 g/cm3) for the injection moulding, extrusion and compression moulding process respectively. The chemical foaming agent reduced the odour concentration in relation to the same non foamed composites. Injection moulding showed better performance in comparison with extrusion and compression moulding in terms of cell morphology, density reduction, odour concentration and mechanical properties.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3