Abstract
Abstract
The research method proposed in the paper assumes multi-level loads of trabecular bone, which are similar to the real ones and demonstrate a step-wise amplitude increase. Throughout the study, such loadings were applied to bone structures sampled from 61 donors. The samples were obtained after hip arthroplasty from the neck fragment of femur heads. All the samples were scanned with a desktop microtomographer. The fatigue damage of the sample structures throughout the experiments was seen in changes in the form of the hysteresis loop recorded in the stress-strain system. The dissipation energy, which is calculated based on the hysteresis loop, is present in the fatigue life function. A three-stage sample fatigue damage pattern was demonstrated. The sum of the dissipation energies was calculated for all the hysteresis loops, and thus we obtain the accumulated dissipation energy, which is referred to as the total fatigue life for all the samples. The calculation results were determined to have an exponential-like curve and reported a high value of the coefficient of determinacy. The accumulated dissipation energy is also related to the value of the compressive stress levels applied. Referring the calculated results of the accumulated energy to the structure index BV/TV, we identified the existence of a strong relationship between the quantities.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献