Optimization of the grain boundary character distribution of pure copper by low-strain thermomechanical processing

Author:

Huang Ming1,Zhao Kunpeng2,Chen Ziyun2,Qin Yuan2,Yang Xinye3,Yang Sen2

Affiliation:

1. School of Materials Science and Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, P. R. China

2. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing , P. R. China

3. School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing , P. R. China

Abstract

Abstract Although thermomechanical processing has been widely used in grain boundary engineering, the relationship between thermomechanical parameters and grain boundary character distribution is still not well understood. In the present study, electron backscatter diffraction was used to study the grain boundary character distribution in pure copper after lowstrain thermomechanical treatments. It was found that the low-R coincidence site lattice frequency and grain size decreases in the following sequence, 10% compression > 15% compression > 5% compression, except for 700 0C. During thermomechanical treatments of copper, strain-induced grain boundary migration and grain growth may occur during annealing of 5% compressed copper, and recrystallization dominates during annealing of 15% compressed copper, while the annealing mechanism of 10% compressed copper changes from strain-induced grain boundary migration and grain growth to recrystallization when the annealing temperature exceeds 600 0C. The results indicated that during single-step low-strain thermomechanical treatments, straininduced grain boundary migration and grain growth would gradually change to recrystallization with the increase of pre-deformation level and annealing temperature. Among the three mechanisms, strain-induced grain boundary migration seems to be more effective than recrystallization and grain growth in the optimization of grain boundary character distribution, and it is suggested that this is due to the high boundary migration rate of strain-induced grain boundary migration.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3