Displacement cascade evolution in tungsten with pre-existing helium and hydrogen clusters: a molecular dynamics study

Author:

Abu-Shams Mohammad1,Moran Jeffery2,Shabib Ishraq23

Affiliation:

1. Industrial Engineering Department, School of Applied Technical Sciences, German Jordanian University, P.O. Box: 35247 Amman , 11180, Jordan

2. School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, Michigan , United States of America

3. Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, Michigan , United States of America

Abstract

Abstract The effects of radiation damage on bcc tungsten with preexisting helium and hydrogen clusters have been investigated in a high-energy environment via a comprehensive molecular dynamics simulation study. This research determines the interactions of displacement cascades with helium and hydrogen clusters integrated into a tungsten crystal generating point defect statistics. Helium or hydrogen clusters of atoms~0.1% of the total number of atoms have been randomly distributed within the simulation model and primary knock-on-atom (PKA) energies of 2.5, 5, 7.5 and 10 keV have been used to generate displacement cascades. The simulations quantify the extent of radiation damage during a simulated irradiation cycle using the Wigner-Seitz point defect identification technique. The generated point defects in crystals with and without pre-existing helium/hydrogen defects exhibit a power relationship with applied PKA energy. The point defects are classified by their atom type, defect type, and distribution within the irradiated model. The presence of pre-existing helium and hydrogen clusters significantly increases the defects (5 - 15 times versus pure tungsten models). The vacancy composition is primarily tungsten (e. g., ~70% at 2.5 keV) in models with pre-existing helium, but the interstitials are primarily He (e. g., ~89% at 10 keV). On the other hand, models with pre-existing hydrogen have a vacancy composition that is primarily tungsten (more than 90% irrespective of PKA energy), and the interstitial composition is more balanced between tungsten (average 46%) and hydrogen (average 54%) interstitials across the PKA range. The distribution of the atoms reveals that the tungsten point defects prefer to reside close to the position of cascade initiation, but helium or hydrogen defects reside close to the positions where clusters are built.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3