Roll-to-Roll Hot Embossing of High Aspect Ratio Micro Pillars for Superhydrophobic Applications

Author:

Kodihalli Shivaprakash N.1,Zhang J.1,Nahum T.1,Barry C.1,Truong Q.2,Mead J.1

Affiliation:

1. 1Department of Plastics Engineering and Center for High-rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, MA, USA

2. 2US Army Natick Soldier Research, Development and Engineering Center, Natick, MA, USA

Abstract

AbstractMany surfaces in nature such as the lotus leaf, cicada wings, water spider legs and gecko feet have attracted attention due to their inherent superhydrophobicity and self-cleaning properties. These surfaces are characterized by water contact angles greater than 150° and contact angle hysteresis < 10°. In this work, a continuous fabrication methodology for production of such superhydrophobic surfaces consisting of well-ordered micro-pillar structures (aspect ratio greater than 1 (1.3)) on a large area polyamide film using roll-to-roll hot embossing process was demonstrated. It was found that the temperature played a significant role in replication. Incomplete replication was observed in regime 1 (150 to 155 °C) and the height of replication was influenced by nip pressure and roll speed due to viscosity variations. In contrast, complete replication was seen in regime 2 (190 to 195 °C) and the height of replication was insensitive to nip pressure and roll speed due to a fairly constant viscosity value. The embossed polyamide surface, once coated with a low surface energy 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (PFTS) monolayer, showed super-repellant characteristics with respect to water and demonstrated a successful manufacturing approach to fabricate superhydrophobic surfaces.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3