Rheological In-Mold Measurements and Characterizations of Sheet-Molding-Compound (SMC) Formulations with Different Constitution Properties by Using a Compressible Shell Model

Author:

Hohberg M.1,Kärger L.1,Bücheler D.2,Henning F.12

Affiliation:

1. Karlsruhe Institute of Technology (KIT) , Institute of Vehicle System Technology, Karlsruhe , Germany

2. Fraunhofer Institute for Chemical Technology (ICT) , Polymer Engineering, Pfinztal , Germany

Abstract

Abstract The rheological characterization of Sheet Molding Compound (SMC) and its modelling is crucial for reliable process simulations. In the past, characterization and material modelling were mainly focusing on SMC with low glass fiber content and a high filler fraction. Due to new application areas, SMC without fillers and with high glass fiber contents, and SMC with carbon fibers become more important. Therefore, these three types of SMCs are characterized in this work, using an inline rheological tool. Differences regarding their compressibility and their flow dependency are identified and considered in an analytical shell modelling. The comparison of the different materials leads to a better understanding of the phenomenological parameters related to the viscosity and friction in the models. Furthermore, the importance to properly consider all relevant material-specific effects becomes evident.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3