Preparation and Characterization of Hydrophobic Flat Sheet Membranes Based on a Recycled Polymer

Author:

Ajari H.1,Zrelli A.1,Chaouachi B.1,Pontié M.2

Affiliation:

1. Environmental , Catalysis and Process Analysis Research Unity, National Engineering School of Gabes, University of Gabes, Gabes , Tunisia

2. Unit of Research UMR CNRS 6144 GEPEA , Angers , France

Abstract

Abstract In this work, we used a recycled low-density polyethylene (LDPE) in order to prepare flat sheet membranes with different polymer concentrations (5 and 10%). The used chemical method for the membrane's preparation is the phase inversion. After obtaining the membranes, we characterized them by atomic force microscopy (AFM) and scanning electron microscopy (SEM) to study their structure and surface characteristics. Based on the SEM images, our membranes have a dense skin layer. In addition, we observed a decrease in the porosity with the increase in the polymer concentration. When the polymer concentration increases from 5 to 10% the porosity decreases from 35.54% to 20.28%. Furthermore, we remarked significant changes in the contact angle and the surface roughness with the increase of the polymer concentration. The roughness increases from 363 to 577 nm for the same evolution of the polymer concentration. These high values of roughness imply obtaining values of contact angles greater than 90° and hydrophobic membranes, which is beneficial for the membrane distillation. Furthermore, the use of our membranes in vacuum membrane distillation (VMD) experiments showed a permeate flux up to 1.503 kg/hm2; for the membrane with 35.54% of porosity and 5% of polymer concentration.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3