Investigations in the Stranski-Laboratorium of the TU Berlin – Physical Chemistry of Colloidal Systems – Going Towards Complexity and Functionality

Author:

Altin Burcu,Barth Anina,Bressel Katharina,Chiappisi Leonardo,Dürr Max,Dzionara Michaela,Elgammal Mahmoud,Fliegner Daniela,Ganas Caroline,Gupta Sakshi,Hedicke Gabriele,Heunemann Peggy,Hoffmann Ingo,Joksimovic Rastko,Kaur Ravneet,Klee Andreas,Liu Hsin-yi,Lutzki Jana,de Molina Paula Malo,Medebach Martin,Michel Raphael,Muthig Michael,Nguyen-Kim Viet,Oppel Claudia,Prévost Sylvain,Popig Jens,Riemer Sven,Sperling Marcel,Strassnick René,Zhang Lin,Gradzielski Michael

Abstract

Abstract The research topics of our group are in general from the field of physical chemistry of colloidal systems. Within this rather wide layout a large variety of quite different questions and systems are tackled, where the common bridging factor is the aim of understanding the properties of colloidal systems based on their mesoscopic structure and dynamics, which in turn are controlled by their molecular composition. With such an enhanced understanding of the correlation between mesoscopic structure and the macroscopic properties the goal then is to employ this knowledge in order to formulate increasingly complex colloidal system with correspondingly more variable and interesting functionalities. From this general context of investigations, some representative systems and questions that have been studied in recent time by us are covered in this text. They comprise the phase behaviour and the structures formed in solutions of surfactants and amphiphilic copolymers. Once these static properties are known, we also have a high interest in the dynamic properties and the kinetics of morphological transitions as they are observed under non-equilibrium conditions, since they are frequently encountered in applications. A key property of amphiphilic molecules is their ability to solubilise sparingly soluble compounds thereby forming microemulsions or nanoemulsions, where the ability to form such systems depends strongly on the molecular architecture of the amphiphiles. By turning to polymeric amphiphiles the concept of surfactants and their architecture can be extended largely towards more versatile structures, more complex self-assembly and much larger length and time scales. Another direction is the surfactant assisted formation of nanoparticles or mesoporous inorganic materials. By combining copolymers with other polymers, copolymers, colloids, or surfactants – for instance via electrostatically driven co-assembly – one may then form increasingly complex colloidal aggregates. By doing so one is able to control rheological properties or develop complex delivery systems, whose properties can be tailor-made by appropriate choice of the molecular build-up. This striving towards well controlled complexity achieved by means of self- and co-assembly then leads to increasingly more functional systems and is the key direction for future research activities in our group.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3