Simulation of 3D Crystallization of Colloidal Nanoparticles on a Substrate during Drying

Author:

Fujita M.1,Yamaguchi Y.1

Affiliation:

1. Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan

Abstract

Abstract This paper presents a simulation of 3D crystallization of colloidal nanoparticles on a substrate during drying. The translational motion and the rotational motion of nanoparticles are modeled by Langevin equation and the law of angular momentum conservation, respectively. Contact force, capillary force, Brownian force, van der Waals force, electrostatic force and fluid drag force are taken into consideration. The drying of colloid is expressed as a decrease of the colloid thickness with time. The drying process of a water solution of polystyrene nanoparticles on a flat substrate is investigated, so that a self-ordered 3D crystal of polystyrene nanoparticles is formed after drying. The crystallization is visualized with time, and vertical and planar structures of nanoparticles are evaluated temporally and quantitatively. The result indicates the primary mechanism of 3D crystallization of colloidal nanoparticles during drying, in which both layering in the vertical direction and planar crystallization take place at the same time.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3