In-situ X-ray microtomography study of the movement of a granular material within a die

Author:

McDonald Samuel A.1,Harris David2,Withers Philip J.1

Affiliation:

1. a Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester, Manchester, UK

2. b School of Mathematics, University of Manchester, Manchester, UK

Abstract

AbstractOptimising the manufacture of powder-processed components requires an understanding of the 3-D movement and behaviour of granular materials during processing. X-ray microtomography has been employed to study the 3-D flow behaviour of a metallic powder in-situ within a die as a function of the displacement of a punch into the die. In particular, the powder transfer behaviour for various open and closed die/punch geometries has been compared, including situations where features exist within the die and on the punch, cases where the die is both open and closed at the top, and finally where the punch itself contains a groove in the centre providing a gap into which powder can flow. Digital image correlation (DIC) has enabled the determination of local vector displacements of powder around the features within the die cavity as a function of punch movement and powder constraint to reveal bulk granular movement and densification. Zones of relatively stagnant flow are observed above a fixed insert within the die cavity, at the opening of a gap within a punch, and as a result of a closed die configuration, the latter showing transitions between the stagnant zones and much more mobile regions and the resulting powder compaction/dilation. As well as providing a means of developing practical die fill and compaction strategies that homogenise densification and thus improve product quality, the technique can also provide unique 3-D flow trajectories for model development.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3