Affiliation:
1. 1Reactor research school, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box 11365-3486, Tehran
Abstract
AbstractIn the case of Fukushima Daiichi nuclear power plant (FNP) accident, the radioactive material was released from reactor units 1–3 and transported to short and long distances due to the atmospheric pathways-motions. Power sources for monitoring posts were lost due to earthquake and tsunami. Based on air dose rates and other data measured by monitoring cars, the amount of radioactive material released to the atmosphere from the power station was obtained. The atmospheric dispersion and the transport model used in the RASCAL code, estimate the radionuclide concentrations downwind, both in the air and on the ground due to deposition. The calculated concentrations are then used to estimate the projected doses for workers in vicinity of the accident area in the first minutes of accident time. For dose modeling, we assumed that each worker was 15 min in vicinity of FNP in accident situation, once without and once with protective clothes or respirator. According to Tokyo Electric Power Company (TEPCO) report six workers had received doses over 250 mSv (309 to 678 mSv) apparently due to inhaling Iodine-131 fume. In this paper the calculated dose results using RASCAL code shows that, if emergency workers who work in early phase of accident had not used protective equipment, for 15 min, inhalation doses from iodine in their thyroid gland up to 12 March afternoon would have been 520 mSv. A comparison between calculation results and TEPCO report shows that dose calculated virtually is nearly equal to TEPCO measurement results.
Subject
Safety, Risk, Reliability and Quality,General Materials Science,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献