Study of Microcellular Injection Molding with Expandable Thermoplastic Microsphere

Author:

Peng J.1,Yu E.2,Sun X.2,Turng L.-S.2,Peng X.-F.1

Affiliation:

1. National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou, China

2. Polymer Engineering Center, University of Wisconsin-Madison, Madison, WI, USA

Abstract

Abstract Injection molding with expandable thermoplastic microspheres (ETM) containing blowing chemicals is capable of fabricating lightweight, dimensionally stable plastic parts while using less material. This paper presents the study of microcellular injection molding of low density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) parts with various ETM contents. It was found that the molded parts exhibit relatively better surface quality than conventional foamed parts. The microcellular morphology and cell density of the fractured cross-sectional surfaces were characterized using a scanning electron microscope (SEM). As reflected by the testing results, the cell microstructure – such as cell size, cell density, and a layered structure with a foamed core sandwiched by skin layers – play an important role in the weight reduction, surface quality, and mechanical properties. A smaller cell diameter and a thicker skin layer help to improve the surface quality and tensile properties of the injection molded parts with ETM. Finally, an appropriate ETM content has a positive effect on cell microstructure and weight reduction, whereas too high a concentration of microspheres adversely affects the tensile properties and surface quality.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3