The Production of Ultra Fine Grained Al-SiCp Composites Produced via High Energy Ball Milling

Author:

Özdemir Ismail1,Ahrens Sascha2,Mücklich Silke2,Wielage Bernhard2

Affiliation:

1. Dokuz Eylül University, Metallurgy and Material Engineering, Buca, Izmir, 35160, Turkey

2. Lehrstuhl für Verbundwerkstoffe, TU Chemnitz, D-09107 Chemnitz

Abstract

Abstract Aluminum-copper alloy EN AW 2017 (Al-3.9Cu-0.6% Mn-0.7%Mg) based composite powders reinforced with 5 and 15 vol. % SiC particulates were produced by high energy ball milling (HEM) process. The milling times range between 10 min and 6 h. After milling for a certain time, i.e., 2 h, the cellular structure of CuAl2 intermetallic particles initially present in the matrix and precipitate at the grain boundaries that were destroyed and distributed along the deformation axis. XRD results clearly showed that the X-ray diffraction peaks of CuAl2 disappear after 2 h milling time suggesting that the submicrometer sized intermetallic CuAl2 particles dissolved into the aluminum matrix. This was also confirmed by SEM investigation. During subsequent milling of composite blends (2 h and more) the reinforcement particles were heavily fragmented. Thus they exhibited a significant reduction in size. The results indicate that the particle size of SiC and CuAl2 was refined greatly after 6 h of high energy ball milling. However, it is clear that the particle size distribution even after the longest period of milling, 6 h, showed no significant narrowing. The crystallite size of the composites was reduced to below 45 nm which was confirmed by X-ray line broadening analysis.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference16 articles.

1. Fundamentals of Mechanical Alloying;Mater Sci Forum.,1992

2. Mechanical Alloying and Milling;Prog Mater Sci.,2001

3. Production and characterization of in situ Al4C3 reinforced aluminumbased composite produced by mechanical alloying technique;Mater Design,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3