Artificial neural network approach to predict ion nitrided case depth and surface hardness of AISI 4340 steel

Author:

Sirin Sule Y.1,İnal Melih1

Affiliation:

1. Kocaeli , Turkey

Abstract

Abstract Since surface hardness affects wear resistance and case depth affects fatigue strength, the optimum value of both is extremely important with respect to the area of use. The aim of this study was to investigate the possibility of predicting case depth and surface hardness in ion nitrided AISI 4340 steels as a function of process time and temperature by using artificial neural networks and to obtain useful case depth and surface hardness data from an artificial neural networks model. Two projections were created for ion nitrided case depth and surface hardness, both depending on process time and temperature, and the conclusion was reached that the experimental data provides sufficient predictability regarding the artificial neural networks model. In the multilayer perceptron artificial neural networks architecture designed, two outputs (case depth and surface hardness) were determined in the same network according to the inputs, thus providing the integrity of the system characterization. The system was created by means of a Matlab simulink graphical user interface, which determined the artificial neural networks outputs according to the specified input with the purpose of visualizing the process. Different input values could be entered for visually determining the output values of the process.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference30 articles.

1. Some effects of the plasma nitriding process on layer properties;Thin Solid Films,1992

2. Tribological behavior of plasma nitride 722M24 material under dry sliding conditions;Wear,1991

3. An evaluation of the response of 722M24 steel to high-temperature plasma nitriding treatments;Heat Treatment of Metals,1989

4. Plasma surface engineering of low alloy steel;Materials Science and Engineering A,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3