Bending behavior of sandwich structures with different fiber facing types and extremely low-density foam cores

Author:

Uzay Cagri1,Geren Necdet1,Boztepe Mete Han1,Bayramoglu Melih1

Affiliation:

1. Saricam-Adana , Turkey

Abstract

Abstract Sandwich structures offer innovative alternative solutions to many weight-critical industrial fields due to their lightweight and very high flexural rigidity compared to conventional materials. A vast number of sandwich configurations can be produced from a variety of materials for use as face sheets and core as well as matrix. Although there are many sandwich structures available in the literature to obtain the desired mechanical and physical properties, the usage of very low-density core materials is very limited. In this study, carbon and glass fiber fabrics having woven plain and ±45 ° fiber orientations and industrial PVC foam core having extremely low density of 40 kg × m−3 and 48 kg × m−3 were used for manufacturing the sandwich panels. Eight different configurations were constructed by hand lay-up followed by vacuum bagging. According to ASTM C393/C393M standard, the sandwiches were subjected to three-point bending (TPB) tests. After performing the TPB tests, the composite sandwich specimens were examined under a stereomicroscope to determine failure modes. The primary failure modes under quasi-static bending loading were found to be top face sheet failures due to fiber and matrix cracks and delamination, and core shear failures due to core crushing just below the top facing and core fractures. In addition, the consistency of the test results were verified and the effects of parameters were investigated by using statistical variance (ANOVA) and regression analysis. The study provides a valuable contribution to the literature regarding sandwich structures having extremely low-density foam core materials and may contribute to the material universe by introducing strong, stiff and lightweight sandwich composites. It provides a comprehensive comparison by considering the effect of different fiber types, fabric fiber orientations and core densities.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference34 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3