Limit load evaluation of inlet pigtail pipe bends with ovality under in-plane bending

Author:

Ramaswami Palanisamy1,Velmurugan Palanisamy Senthil2,Moganapriya Chinnasamy2,Rajasekar Rathanasamy2

Affiliation:

1. 1Al Khobar, Saudi Arabia

2. 2Erode, Tamil Nadu, India

Abstract

AbstractThe prediction of limit load on inlet pigtail pipe bends employed in a hydrogen reformer is one of the unresolved engineering tasks in chemical industries. This is because of the uncertainty and required extrapolation of the applicable data. In practice, the cross section of the inlet pigtail pipe bend becomes non-circular due to the bending process. This irregularity in shape extends when pipes are subjected to in-plane bending moment during plant operation. Ovality is the shape imperfection in a pipe bend considered for the present study. It affects the load carrying capacity and life cycle of the pipe bend. A three-dimensional finite element method is used to model and analyze a stand-alone, long radius inlet pigtail pipe bend. The pipe bend is modeled with a shape irregularity for which the percent ovality varies from 0 to 20. By considering ovality, it is shown that there is a significant effect in limit load due to in-plane bending moment. Also, the stress induced in the pipe bend geometry increases with the percentage of ovality. The allowable levels are obtained from finite elements analysis, considering various bend factors, and the closed form limit load solution is proposed, including the effect of ovality in pipe bend.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference22 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3