Effect of austenitizing temperature on the microstructure evolution and properties of Cu-bearing CADI

Author:

Nan Rong1,Fu Hanguang1,Yang Penghui1,Lin Jian1,Lei Yongping1

Affiliation:

1. Beijing , P. R. China

Abstract

Abstract In the present study, the authors investigated the effect of the austenitizing temperature (860 to 1020 °C) on the microstructure evolution, hardness, wear resistance and corrosion resistance of Cu-bearing carbidic austempered ductile iron (CADI) by means of an optical microscope (OM), a scanning electron microscope (SEM), a Rockwell hardness tester, a microhardness tester, an X-ray diffractometer (XRD), a block-on-ring wear testing machine and electrochemical tester. The results show that with an increase in the austenitizing temperature, the amount of acicular ferrite decreases, size expands, and the volume fraction of high-carbon austenite increases gradually as does carbon content. Part of the carbide dissolves into the matrix, and the amount is significantly reduced. The hardness of Cu-bearing CADI first increases and subsequently decreases, and the hardness is highest at 940 °C. With an increase in austenitizing temperature, the wear loss of Cu-bearing decreases and its wear resistance increases. When the austenitizing temperature is 940 °C, wear loss is lowest and wear resistance is optimal. Electrochemical corrosion experiments show that as the austenitizing temperature increases, the corrosion potential of Cu-bearing CADI is slightly improved, the corrosion current density is gradually reduced, and the corrosion resistance of Cu-bearing CADI is improved. Considered comprehensively, the austenitizing temperature of Cu-bearing CADI should be determined to be 940 °C.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3