A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems

Author:

Yıldız Ali Rıza1,Yıldız Betül Sultan1,Sait Sadiq M.2,Bureerat Sujin3,Pholdee Nantiwat3

Affiliation:

1. Bursa , Turkey

2. Dhahran , Saudi Arabia

3. Khon Kaen , Thailand

Abstract

Abstract In this paper, a novel hybrid optimization algorithm (H-HHONM) which combines the Nelder-Mead local search algorithm with the Harris hawks optimization algorithm is proposed for solving real-world optimization problems. This paper is the first research study in which both the Harris hawks optimization algorithm and the H-HHONM are applied for the optimization of process parameters in milling operations. The H-HHONM is evaluated using well-known benchmark problems such as the three-bar truss problem, cantilever beam problem, and welded beam problem. Finally, a milling manufacturing optimization problem is solved for investigating the performance of the H-HHONM. Additionally, the salp swarm algorithm is used to solve the milling problem. The results of the H-HHONM for design and manufacturing problems solved in this paper are compared with other optimization algorithms presented in the literature such as the ant colony algorithm, genetic algorithm, particle swarm optimization algorithm, simulated annealing algorithm, artificial bee colony algorithm, teaching learning-based optimization algorithm, cuckoo search algorithm, multi-verse optimization algorithm, Harris hawks optimization optimization algorithm, gravitational search algorithm, ant lion optimizer, moth-flame optimization algorithm, symbiotic organisms search algorithm, and mine blast algorithm. The results show that H-HHONM is an effective optimization approach for optimizing both design and manufacturing optimization problems.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3