Corrosion behavior of a precipitation hardened Ni–Cr–Co–Mo alloy under partial slagging coal gasification conditions

Author:

Lee Sungkyu1,Park Joohyun2,Hwang Sang Yeon1,Chung Seok-Woo1,Lee Seung-Jong1,Yun Yongseung1,Kim Min Jung3

Affiliation:

1. Yongin

2. Ansan

3. Suwon , South Korea

Abstract

Abstract A mechanistic exposure experiment was performed on the commercially available precipitation hardened VDM® alloy C–263 (Nicrofer® 5120 CoTi) Ni-Cr-Co-Mo alloy samples (21 wt.-% Cr, 21 wt.-% Co, 6.1 wt.-% Mo, 2.4 wt.-% Ti, 0.7 wt.-% Fe, 0.6 wt.-% Al, 0.6 wt.-% Mn, 0.4 wt.-% Si, 0.2 wt.-% Cu, 0.08 wt.-% C and bal. Ni) at coal gasification pilot plant facilities affiliated with the Institute for Advanced Engineering in Yongin, South Korea. Thermodynamic Ellingham–Pourbaix stability diagrams were constructed to provide insight into the mechanism of the observed corrosion behavior prevailing in the piping materials between the particulate removal unit and water scrubber of the coal gasification pilot plant. The thermodynamic inference on the corrosion mechanism was supplemented with the morphological, compositional and microstructural analyses of the exposed samples using scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses performed on the external and cross–sectional surfaces of the recovered corrosion test samples to comprehensively examine the corrosion scale. Corrosion products with conspicuous spallation were observed after 139 h exposure to the corrosive environment (60 vol.-% CO, 28.4 vol.-%H2, 2.5 vol.-% CO2, 0.8 vol.-% CH4, 600 ppm H2S, and 110 ppm carbonyl sulfide under 2.005 MPa and 170 °C). Scanning electron microscopy and energy-dispersive X-ray spectroscopy positively identified formation of rather extensively peeled–off oxides as corrosion scales on the post–exposure alloy samples, which were attributed to the combined effects of evaporation of hydrated Fe, Al, and Cr chlorides and their subsequent transformation into thin (spalled) oxides. This article contains technical contents on the effects of Cr, Mo, Fe, and Al on the observed corrosion behavior which supplement and cast engineering insight into the previously published MP 2-2018 article on corrosion behavior of Ni-Cr-Mo-Fe alloy in a similar environment.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3