Effects of Interaction of Gemini Ester Quat Surfactants with Biological Membranes

Author:

Cyboran-Mikołajczyk Sylwia1,Bonarska-Kujawa Dorota1,Kleszczyńska Halina1,Łuczyński Jacek2

Affiliation:

1. Department of Physics and Biophysics , Wroclaw University of Environmental and Life Sciences, Wroclaw , Poland

2. Faculty of Chemistry , Wroclaw University of Technology, Wrocław , Poland

Abstract

Abstract The aim of the study was to determine the relation between the biological activity of two homologous series of cationic gemini surfactants, which are quaternary ammonium salts, and their structure. The measure of the biological activity of the compounds was assumed to be the effects they exert on the membrane of erythrocytes, treated as a simple model of the biological membrane. In particular, it was determined the effects of the compounds on hemolysis and the osmotic resistance of erythrocytes and the fluidity of erythrocyte membrane, and the packing arrangement of the polar heads of membrane lipids. The results have shown that surfactants affect the osmotic resistance of erythrocytes to various degrees, and at sufficiently high concentrations operate destructively on their membrane, eventually causing hemolysis, modify the fluidity of erythrocyte membrane and affect the arrangement of polar heads of membrane lipids. Additionally, the results showed that that activity depends on a surfactant's chemical structure, in particular, on the length of its alkyl chain and structure of the polar head group that determines the spacing between the chains. In both used new series the compounds containing 10, 12 and 14 carbon atoms in a chain possess a high biological activity. In addition, the surfactants with larger spaces between the chains are more active than those with smaller spacing. The investigations have revealed a high activity of compounds with longer chains and bigger polar heads. The results of the study may find application when designing a molecular structure and synthesizing new compounds of specific, desired activity.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3