Affiliation:
1. Saarbrücken
2. Dortmund
3. Kaiserslautern , Germany
Abstract
Abstract
Weight-optimized component design as well as a reliable estimation of the lifetime of metallic materials and components require a comprehensive understanding of fatigue processes and a systematic investigation of the underlying fatigue behavior. This becomes even more important when designing highly loaded components such as wheels of high-speed passenger railway systems. Typically, mechanical stress-strain hysteresis measurements and increasingly different types of temperature and electrical resistance measurements are used to characterize the fatigue behavior and fatigue processes. Here, electrical resistance measurements provide significant information as they allow the detection of microstructural changes, e. g., through changes in dislocation density and structure. In addition, electrical resistance measurements can be considered in load increase and constant amplitude tests with inserted load-free sequences and in service load tests to characterize damage progress. In this paper, characteristic values of the change in electrical resistance were determined for ICE R7 wheel steel specimens and correlated with dislocation density, which was load- and cycle-dependent and determined through transmission electron microscopy.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献