Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistance

Author:

Arun Ilangovan1,Vaishnavi P.2,Duraiselvam Muthukannan1,Senthilkumar V.1,Anandakrishnan V.1

Affiliation:

1. Department of Production Engineering , National Institute of Technology, Tiruchirappalli , India

2. Department of Computer Applications , University College of Engineering, Anna University, Tiruchirappalli , India

Abstract

Abstract Electrical discharge alloying was performed on AISI-D2 steel using Ni–W powder mixed dielectric in order to improve the hardness and to reduce the specific wear rate. The alloyed layer was characterized using optical microscopy, scanning electron microscopy, X-ray diffraction analysis and energy-dispersive spectroscopy. Wear tests were conducted based on L9 orthogonal array in a pin-on-disc tribometer and the alloying parameters were optimized using Taguchi's technique. Hard intermetallics based on Fe7C3, Cr3C2 and Ni2W4C were formed by electric discharge alloying, which primarily contributed to the improvement in hardness up to 600 HV0.5. The specific wear rate of the alloyed layer was subsequently reduced by around a factor of eight compared to that of the base material. The pulse off-time was found to be predominant in obtaining higher hardness and lower specific wear rate among the alloying parameters, peak current, pulse on-time and off-time.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3