Effect of Pre-Molding Process and Additive of Injection Molded Wood/PP Composites

Author:

Yu Y.1,Yang Q. Y.2,Nomura M.3,Hamada H.1

Affiliation:

1. Kyoto Institute of Technology , Kyoto , Japan

2. Donghua University , Shanghai , PRC

3. Green Plaisir Company , Osaka , Japan

Abstract

Abstract Injection molded composites are becoming more widespread in recent years because of their high quality and low cost. However, compared to synthetic fiber composites, it is difficult to maintain a constant fiber volume fraction and uniform distribution for natural fiber composites during the direct injection process. This is mainly because natural fibers are more easily twisted during feeding into the injection machine, owing to their rough surfaces. These feeding difficulties are particularly due to the low bulk densities of natural fibers, especially natural fillers. Additional challenges to the injection process include the concentration and, especially for natural filler reinforced composite. To address these problems, the current study investigates the mechanical properties and morphologies of polypropylene (PP) reinforced by wood powder. Two pre-molding processes, dry-blending and compounding, were compared, and the effects of an additive (crystalline polyalpha olefin (CPAO)) on the mechanical properties of the wood/PP composites were investigated. This investigation is based on tensile, three point bending, and Izod impact tests, and scanning electron microscope (SEM) observation of the fracture surfaces. Results indicated that the composites molded through compounding exhibited better mechanical properties than the samples molded through the direct dry-blending process. In addition, the tensile and bending properties of the composites produced through compounding were found to increase with the addition of CPAO content, because of improved wood powder distribution in the PP matrix.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3