Effect of equal channel angular pressing on microstructure, texture, and high-cycle fatigue performance of wrought magnesium alloys

Author:

Müller Julia1,Janeček Miloš2,Yi Sangbong1,Čížek Jakub3,Wagner Lothar1

Affiliation:

1. Clausthal University of Technology, Institute of Materials Science and Engineering, Clausthal-Zellerfeld, Germany

2. Charles University, Department of Physics of Materials, Prague, Czech Republic

3. Charles University Prague, Department of Low Temperature Physics, Prague Czech Republic

Abstract

Abstract The magnesium alloys AZ80 und ZK60 received from Dead Sea Magnesium in as-cast conditions were extruded at T = 350 °C using an extrusion ratio of ER = 22. The extruded bars were severely plastically deformed by equal channel angular pressing (ECAP). Multiple ECAP processing up to 8 passes was done. The ECAP-induced changes in grain size and grain size distribution were measured by transmission electron microscopy while changes in dislocation density and crystallographic textures were determined by positron annihilation spectroscopy and X-ray diffraction analysis, respectively. The strain induced by ECAP was found to influence the microstructural characteristics, in particular the grain size, the dislocation density, and the crystallographic texture, which in turn enhance (or deteriorate) the mechanical or fatigue response of both alloys.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3